Chem. Ber. 115, 989-1003 (1982)

Darstellung und Struktur homo- und heterometallischer dreikerniger μ_3 -RP-verbrückter Cluster μ_3 -RPM₂(CO)₆M'L_n (M = Fe, Ru; M'L_n = η^5 -C₅H₅(CO)₂Mn, Ru(CO)₃H₂)

Josef Schneider, Laszlo Zsolnai und Gottfried Huttner*

Lehrstuhl für Synthetische Anorganische Chemie, Fakultät Chemie der Universität Konstanz, Postfach 5560, D-7750 Konstanz

Eingegangen am 27. Mai 1981

Die Darstellung der heterometallischen Cluster η^5 -C₅H₅(CO)₂MnFe₂(CO)₆\mu₃-PR (2) aus η^5 -C₅H₅(CO)₂MnP(R)Cl₂ (1) und Fe₂(CO)₉ sowie aus η^5 -C₅H₅(CO)₂MnP(R)H₂ (3) und Fe₃(CO)₁₂ wird für verschiedene organische Reste R beschrieben. Analoge Mangan-Ruthenium-Cluster 4 sind durch Umsetzung von 3 mit Ru₃(CO)₁₂ zugänglich. Der Bau dieser Cluster wird an zwei Beispielen η^5 -C₅H₅(CO)₂MnM₂(CO)₆\mu₃-PC₆H₁₁ (M = Fe, 2d; Ru, 4a) durch Röntgenstrukturanalyse belegt. Homometallische μ_3 -RP-verbrückte Rutheniumcluster Ru₃(CO)₉(μ_2 -H)₂ μ_3 -PR (5) entstehen bei der Darstellung der heterometallischen Cluster 4 als Nebenprodukte. Für 5a (R = c-C₆H₁₁) wird die Atomanordnung einschließlich der Lage der μ_2 -Wasserstoff-Liganden röntgenstrukturanalytisch bestimmt.

Synthesis and Structure of Homo- and Heterometallic Trinuclear μ_3 -RP Bridged Clusters μ_3 -RPM₂(CO)₆M'L_n (M = Fe, Ru; M'L_n = η^5 -C₅H₅(CO)₂Mn, Ru(CO)₃H₂)

Synthesis of heterometallic clusters $\eta^5-C_5H_5(CO)_2MnFe_2(CO)_6\mu_3-PR$ (2) with various organic groups is accomplished on two different routes: Either by reaction of $\eta^5-C_5H_5(CO)_2MnP(R)Cl_2$ (1) with Fe₂(CO)₉ or from $\eta^5-C_5H_5(CO)_2MnP(R)H_2$ (3) and Fe₃(CO)₁₂. Analogously manganese-ruthenium clusters 4 are available from 3 and Ru₃(CO)₁₂. The structure of these clusters is exemplified for two compounds $\eta^5-C_5H_5(CO)_2MnM_2(CO)_6\mu_3-PC_6H_{11}$ (M = Fe, 2d; M = Ru, 4a) by single crystal X-ray analyses. Homometallic μ_3 -RP bridged ruthenium clusters Ru₃(CO)₉(μ_2 -H)₂ μ_3 -PR (5) are obtained as byproducts of the synthesis of 4. The structure of 5a (R = c-C₆H₁₁), including the position of the μ_2 -hydrogen ligands, is determined by X-ray methods.

Dichlorphosphan-Komplexe des Typs η^5 -C₅H₅(CO)₂MnP(R)Cl₂ (1) reagieren mit Fe₂(CO)₉ zu den heterometallischen Clustern η^5 -C₅H₅(CO)₂MnFe₂(CO)₆PR¹⁾ (2). In besseren Ausbeuten werden die Komplexe 2 durch Umsetzung der Phosphankomplexe η^5 -C₅H₅(CO)₂MnP(R)H₂ (3) mit Fe₃(CO)₁₂ erhalten²⁾. Auf gleiche Weise können die zu 2 analogen Rutheniumcluster η^5 -C₅H₅(CO)₂MnRu₂(CO)₆PR (4) dargestellt werden.

Dreikernige Cluster vom Typ 2 addieren reversibel Liganden L zu 6 unter Öffnung von Metall-Metall-Bindungen³⁾. Da diese Reaktion über einen weiten Bereich von Substituenten R und Liganden L reversibel verläuft, eignen sich die Verbindungen 2 in besonderer Weise für eine kinetische Analyse dieses für das Verständnis der Reaktivität von Clustern wichtigen Phänomens.

Als Basis für weitere kinetische Untersuchungen haben wir Synthesen für 2a-g ausgearbeitet¹⁾ und diese auf die Darstellung analoger Rutheniumcluster 4 übertragen.

© Verlag Chemie GmbH, D-6940 Weinheim, 1982 0009 – 2940/82/0303 – 0989 \$ 02.50/0 Zwei Struktur-Analysen belegen den analogen Bau von 2 und 4. Außerdem konnte bei der Synthese von 4 eine weitere dreikernige Rutheniumverbindung mit der Summenformel $Ru_3(CO)_9H_2PR$ isoliert werden, der nach der Röntgenstrukturbestimmung die Struktur 5 zukommt und die somit eine Analogverbindung der entsprechenden Di- μ -hydridoeisen-Cluster darstellt²⁾.

Präparative Ergebnisse

Die noch nicht beschriebenen Ausgangskomplexe 1 und 3 entstehen auf dem üblichen Wege^{4,5)} durch Austausch des Liganden Tetrahydrofuran gegen RPCl₂ bzw. RPH₂ in dem photochemisch in THF aus η^5 -C₅H₅(CO)₃Mn erhaltenen η^5 -C₅H₅-(CO)₂MnTHF-Komplex. Die blaßgelben bis orange gefärbten Kristalle von 1 und 3 sind auch an Luft längere Zeit beständig.

 $Fe_2(CO)_9$ reagiert mit den Komplexen 1 in toluolischer Lösung bei 30-45 °C während 12-48 h zu den μ_3 -RP-verbrückten Clustern 2¹⁾ (Ausbeuten 4-19%), in denen die beiden Halogenreste der Ausgangsverbindungen 1 durch die Eisenatome eines $Fe_2(CO)_6$ -Fragmentes ersetzt sind.

In wesentlich verbesserten Ausbeuten (45 - 62%) können die Cluster 2 nach 12- bis 16stündiger Reaktion von 3 mit Fe₃(CO)₁₂ dargestellt werden. Die Umsetzung von 3 mit Ru₃(CO)₁₂ liefert die zu 2 homologen Mangan-Ruthenium-Cluster 4.

Die nahezu schwarz glänzenden Kristalle von 2 lösen sich schlecht in *n*-Pentan und *n*-Hexan, gut dagegen mit rotbrauner Farbe in Toluol und THF. Die leuchtend roten Kristalle von 4 lösen sich ebenfalls in Alkanen schlecht; in THF, Toluol oder chlorierten

Verbindung		H-NM	R a)	³¹ P-NMR ^{b)}	IR c)
$c_{a} = CH_{2}CH_{3}$ a_{b}	b 1.8 (m), [3H]	a 2.8 (m), [2H]	3.7 (d) [5H] ($J_{\rm PH} = 1.9 {\rm Hz}$)	452	2059 (s), 2009 (vs), 1982 (s), 1968 (m), 1954 (w), 1867 (m), 1832 (w)
$2b = n-C_4H_9$	2.4 (m), [9H]		3.8 (d) $[5 \text{H}] (J_{\text{DU}} = 2.1 \text{ Hz})$	472	2058 (s), 2018 (vs), 1998 (s), 1977 (m), 1961 (w), 1889 (m), 1857 (w)
$c = t - C_4 H_9$	1.7 (d), [9H] (J _{PH}	_I = 22 Hz)	4.1 (d) [5 H] $(J_{\rm PH} = 1.7 \rm Hz)$	519	2057 (s), 2010 (vs), 1987 (s), 1970 (m), 1950 (w), 1866 (m), 1829 (w)
$= c - C_6 H_{11}$	2.7 (m), [11H]		3.8 (d) [5H] $(J_{\rm PH} = 2.0 \rm Hz)$	503	2058 (s), 2036 (vs), 2009 (s), 1987 (m), 1972 (m), 1878 (m), 1841 (w)
$= CH_3OC_6H_4$	a 3.9 (s), [3H]	4.9 (d), [5H] [<i>J</i> ₅₁₁ = 1.9	b 7.4 (m), 8.3 (m) [2H] [2H] Hz)	450	2060 (s), 2022 (vs), 2002 (s), 1983 (m), 1972 (m), 1884 (m), 1856 (m)
$= \frac{2f}{i-CH(CH_3)_2}$	b 1.8 (dd), [6H]	a 2.5 (m), [1H]	4.0 (d) $[5 H] (J_{PH} = 1.8 Hz)$	483	2058 (s), 2019 (vs), 1998 (s), 1978 (m), 1961 (m), 1888 (m), 1857 (m)
$4a = c - C_6 H_{11}$	2.9 (m), [11 H]	3.9 (d) [5 H] $(J_{\rm PH} =$: 2.0 Hz)	435	2069 (s), 2036 (vs), 2009 (s), 1987 (m), 1972 (m), 1878 (m), 1841 (w)
$= C_6 H_5$	7.4 (m), [5H]	4.2 (d) [5H] (J _{PH} =	= 2.1 Hz)	390	2071 (s), 2024 (vs), 2010 (s), 1985 (m), 1961 (m), 1888 (m), 1857 (w)

Kohlenwasserstoffen sind sie mit oranger oder hellroter Farbe gut löslich. Die Cluster 2 und 4 schmelzen im allgemeinen unter Zersetzung zu $M_3(CO)_9(PR)_2$ (M = Fe, Ru) zwischen 154 und 194°C und sind an Luft beständig.

Die *IR-Spektren* von 2 und 4 zeigen im v_{CO} -Bereich in Lösung (*n*-Hexan) ausnahmslos sieben Absorptionen, die in ihrer Lage und Intensität jeweils nahezu übereinstimmen, so daß die für 2d und 4a strukturanalytisch ermittelte Anordnung der CO-Gruppen auch in den anderen Fällen unverändert vorliegen dürfte. Die Schwingungen im Bereich von ca. 1870 und ca. 1840 cm⁻¹ können den beiden Brückencarbonylgruppierungen zugeordnet werden (Tab. 1).

Im ¹*H-NMR-Spektrum* findet man Resonanzen im Bereich um 3.7 – 4.9 ppm für die Cyclopentadienylprotonen sowie die Signale der Reste R am μ_3 -Phosphoratom mit den jeweils typischen Verschiebungen (Tab. 1).

Das ³¹P-NMR-Spektrum (Tab. 1) zeigt immer ein scharfes Singulett mit starker Verschiebung zu tieferem Feld (400 – 500 ppm), wie sie für μ_1 -RP-Liganden typisch ist.

Beim *elektronenstoßinduzierten Zerfall* zeigen die Cluster 2 und 4 ein recht einheitliches Verhalten. Neben der Massenlinie für das Molekül-Ion beobachtet man die Signale sämtlicher Ionen, die durch sukzessive Abspaltung der 8 CO-Gruppen entstehen. Massenlinien für die Fragmente $C_5H_5MnPR^+$, $C_5H_5MnMPR^+$, M_2PR^+ und $C_5H_5MnP^+$ deuten auf die große Stabilität der Metall-Phosphor-Gruppierung in den Ionen hin.

Röntgenstrukturanalysen von 2d und 4a*)

Kristalldaten sowie Angaben zum Lösungsweg enthält Tab. 2. Abb. 1 zeigt je eine Ansicht der Moleküle. Die Strukturparameter sind in Tabb. 3 und 4 wiedergegeben.

In den Verbindungen **2d** und **4a** liegt der gleiche Strukturtyp wie in η^5 -C₅H₅(CO)₂-MnFe₂(CO)₆PC₆H₅ vor¹). Zwei Eisen- bzw. zwei Rutheniumatome und ein Manganatom bilden einen dreigliedrigen Metallocyclus. An jedes Eisen- (oder Rutheniumatom) sind drei terminale CO-Gruppen gebunden, während die beiden Carbonylgruppen des η^5 -C₅H₅(CO)₂Mn-Fragmentes unsymmetrische Brücken zu den Fe- bzw. Ru-Atomen ausbilden. Die drei Metallatome spannen somit die Grundfläche einer idealisierten trigonalen Pyramide auf, deren Spitze von dem Phosphoratom des μ_3 -C₆H₁₁P-Liganden eingenommen wird. Näherungsweise folgt die Anordnung einer C₅-Symmetrie (Spiegelebene durch Mn, P und die Mitte der Fe – Fe- bzw. Ru – Ru-Bindung).

Gegenüber η^{5} -C₅H₅(CO)₂MnFe₂(CO)₆PC₆H₅¹⁾, von dem sich **2d** lediglich durch den Ersatz der Phenyl- durch die Cyclohexylgruppe unterscheidet, bestehen nur geringfügige Unterschiede in den Bindungslängen und -winkeln. So beobachtet man z. B. eine Mn(1) – Fe(2)-Bindungslänge von 275.2 (4) pm bei dem phenyl-substituierten Cluster¹⁾, während sie bei **2d** 270.6 (1) pm beträgt. Die beiden anderen Metall-Metall-Bindungen sind in beiden Clustern im wesentlichen gleich lang (**2d**: Mn(1) – Fe(1) 274.8 (1), Fe(1) – Fe(2) 267.5 (1) pm bzw. 274.2 (4) und 268.6 (4) pm in η^{5} -C₅H₅(CO)₂-MnFe₂(CO)₆PC₆H₅¹⁾).

^{*)} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 50036, des Autors und des Zeitschriftenzitats angefordert werden.

	Tab. 2. Daten zur Struktur	analyse von 2d, 4a und 5a ^{a)}	
Verbindung	η^{5} -C ₅ H ₅ (CO) ₂ MnFe ₂ (CO) ₆ (μ_{3} -PC ₆ H ₁₁) (2d)	π^{5} -C ₅ H ₅ (CO) ₂ MnRu ₂ (CO) ₆ (μ_{3} -PC ₆ H ₁₁) (4a)	$\frac{Ru_{3}(CO)_{9}(\mu_{2}\text{-}H)_{2}(\mu_{3}\text{-}PC_{6}H_{11})}{(5a)}$
Molmasse	570	660	671
Kristallabmessungen Zelldimensionen	$0.3 \times 0.3 \times 0.5 \mathrm{mm^3}$	$0.2 \times 0.2 \times 0.4 \text{ mm}^3$	$0.2 \times 0.3 \times 0.3 \text{ mm}^3$
<i>a</i> , <i>b</i> , <i>c</i> (pm) α, β, γ (°)	806.2 (4), 1675 (1), 1596 (1) 90, 100.41 (4), 90	1131 (2), 1165 (2), 1776 (2) 90, 107.40 (4), 90	$\begin{array}{c} 1241 \ (1), \ 1284 \ (1), \ 1433 \ (1) \\ 101.33 \ (7), \ 101.65 \ (8), \\ 90.29 \ (8) \end{array}$
Raumgruppe	$P2_1/c$	$P2_1/c$	P1
Z	4	, 4 ,	4
Meßtemperatur (°C)	- 60	- 80	- 80
ω-scan, Δω (°)	1.0	1.0	1.0
ώ (°min ⁻¹)	1.0 - 29.3	1.0 - 29.3	1.0 - 29.3
20-Bereich (°)	2.0 - 44.0	2.0 - 42.0	2.0 - 40.0
λ -Mo- K_{α} (Graphit-Mono- chromator) (pm)	71.069	71.069	71.069
Verwendete unabhängige Reflexe	2197 (I ≥ 10 ɑ(I))	$1890 (I \geq 8 \sigma(I))$	$3420 \ (I \geq 7 a(I))$
Exp. Absorptionskorrektur			
(w-Scan)	+	+	+
Lösungsmethode	direkt	direkt	direkt
Programme	Shel-XTL	Shel-XTL	Shel-XTL
Verfeinerung	volle Matrix	volle Matrix	volle Matrix
Programme	EXTL	EXTL	EXTL
Übereinstimmungsfaktor R_1	0.051	0.037	0.041
a) In Klammern Standardabwe	ichungen der letzten jeweils angegebenen Dez	zimale.	

993

Abb. 1. Molekülstruktur von 2d (links) und 4a (rechts)

Tab. 3.	Strukturi	parameter	von	2d a)
---------	-----------	-----------	-----	-------

						Abstände und W	inkel (pm	bzw. ⁰)
Lagepar	ameter D							
Atom	x/a	у/ь	z/c	В				
Fe1	0.3271(1)	0.50570(5)	0.17007(5)				
C11	0.1467(9)	0.5688(4)	0.1640(4)	2.0(1)	Mn(1) - Fe(1)	274.8(1)	
011	0.0331(7)	0.6111(3)	0.15/2(3)	3.3($M_{\rm P}(1) = E_{\rm P}(2)$	270 6(1)	
C12	0.4962(9)	0.5/6/(4)	0.1740(4)	2.0(1		MH(1) = Fe(2)	270.0(1)	
012	0.6009(7)	0.6220(3)	0.1/10(3)	2.4(1		Fe(1) - Fe(2)	267.5(1))
C13	0.29//(9)	0.4955(4)	-0.0142(4)	4 5 (1		$F_{P}(1) - P(1)$	213.7(2)	
013	0.2767(0)	0.4055(3)	0.3236(1)	1.3(.,	16(1) 1(1)	21317(2)	
Mnl	0.53500(1)	0.4277(4)	0.3417(4)	1.9(1	1)	Fe(2) - P(1)	214.8(2))
031	0.3032(0)	0.4361(3)	0.3834(3)	3.2(Ď	Mn(1) - P(1)	222.0(2))
031	0.3750(8)	0.5358(4)	0.3179(4)	1.8(1	r)	D(1) 0(1)	194 0/6	
032	0.3933(6)	0.6009(3)	0.3440(3)	2.8(1	1)	P(1) = C(1)	104.0(0))
Fe2	0.5351(1)	0.3808(1)	0.2044(1)			Fe(1) - C(11)	178.7(7))
C21	0.7216(9)	0.4382(4)	0.2045(4)	2.2(1)	Fe(1) = C(12)	180.2(7))
021	0.8475(7)	0.4718(3)	0.2062(3)	3.5(1)	10(1) 0(12)		,
C22	0.6228(9)	0.2924(4)	0.2535(4)	2.5(1)	Fe(1) - C(13)	172.9(7))
022	0.6834(7)	0.2362(3)	0.2883(4)	4.3(Fe(2) - C(21)	178.4(7))
C23	0.5165(10)	0.3448(5)	0.1001(5)	3.1($P_{-}(2) = O(22)$	176 3/7	`
023	0.5040(8)	0.3190(4)	0.0316(4)	4.0(1)	re(2) = C(22)	1/0.3(/)	,
P1	0.2654(2)	0.3043(1) 0.2274(4)	0.1919(1)	3.20	2)	Fe(2) - C(23)	175.1(7))
C2	0.1557(10)	0.1671(5)	0.1428(5)	4.0(2)	Fe(1) = C(32)	237-6(6))
C3	-0.0298(10)	0.1721(5)	0.0464(5)	3.5(2)	16(1) 6(32)	20110(0)	, ,
C4	-0.0296(10)	0.2547(5)	0.0172(5)	4.0(2)	Fe(2) - C(31)	229.3(6))
05	0.0566(10)	0.3165(5)	0,0505(5)	3.3(2)	Mn(1) - C(31)	181.8(7)
C0	0,1021(8)	0.3116(4)	0.1472(4)	1.8(1)	w (1) 0(30)	101 7/6	
C51	0.2995(10)	0.4464(4)	0.4474(5)	2.9(1)	Mn(1) = C(32)	101.7(0	,
C52	0.1470(9)	0.4402(4)	0.3871(4)	2.7(1)			
C53	0.1416(9)	0.3625(4)	0.3523(4)	2.5(1)	Fe(1) - Mn(1) -	- Fe(2)	58.74(3)
C54	0.2893(9)	0.3226(4)	0.3883(4)	2.6(1)	$E_{2}(1) = E_{2}(2)$	- Mn (1)	61 42(3)
C55	0.3843(10)	0.3748(4)	0.4471(4)	2.8(1)	re(1) - re(2)		01.42(5)
						Fe(2) - Fe(1) -	- Mn(1)	59.84(3)
Anisot	rope Temperatur	faktoren ^{b)}				Fe(1) - C(32) -	- Mn(1)	80.7(2)
Atom	^B 11 ^B 22	B33	^B 12	^B 13	^B 29	Fe(2) - C(31) -	- Mn(1)	81.4(2)
Fo(1)	2 11 (5) 1 3	8(4) 1.00(4)	-0.23(3)	0.12(3)	0.11(3)	Fe(1) - P(1) -	- C(1)	137.5(2)
Mn(1)	1.75(5) 1.4	1(4) 0.61(4)	0.00(3)	0.08(3)	0.03(3)	$F_{O}(2) = P(1)$	- C(1)	131 3(2)
Fe(2)	1.78(5) 1.7	5(4) 1.23(4)	-0.04(3)	0.25(3)	-0.26(3)	16(2) - F(1)	2(1)	
P(1)	1.97(8) 1.3	9(7) 0.93(6)	-0.26(6)	0.06(5)	-0.09(5)	Mn(1) - P(1)	- C(1)	137.5(2)

a) In Klammern Standardabweichungen der letzten angegebenen Dezimale. – ^{b)} Der Temperaturfaktor *T* ist gegeben durch $T = \exp[-1/4(B_{11}h^2a^{*2} + B_{22}k^2b^{*2} + B_{33}l^2c^{*2} + 2B_{12}hka^*b^* + 2B_{13}hla^*c^* + 2B_{23}klb^*c^*)]; B, B_{ij}$ in 10⁴ pm².

Lager	parameter b)					Abstände und Wink	el (om bzw.	°)
Atom	x/a	у/ъ	z/c	В				
Ru1	0.24099(8) 0.35418(7)	0.33048(5)				
Ru2	0.33097(8)) 0.25870(8)	0.48359(5)		Mn(1) - Ru(1)	283.8(2)	
Mn1	0.2928(1)	0.1157(1)	0.34817(8)		Mn(1) - Ru(2)	284.8(2)	
P1	0.1535(2)	0.2188(2)	0.3875(2)	<i>.</i>	- (1)		
C11	0.1628(10)) 0.4789(10)	0.3619(6	2.3	(2)	Ru(1) - Ru(2)	282.6(1)	
011	0.1115(7)	0.5538(7)	0.3793(4)	3.5	(2)	Ru(1) - P(1)	225.7(3)	
C12	0.3917(11)	0.4363(10)	0.334/(6	2.6	(2)	P(1) = P(1)	225 5 (2)	
012	0.4011(0)	0.4076(7)	0.3391(5	/ 4.0) 2.4	(2)	Ru(2) = P(1)	223.3(3)	
013	0.0877(8)	0.3605(7)	0 1561(5	,	(2)	Mn(1) - P(1)	225.2(3)	
C21	0.2646(11)	0.3716(10)	0.5321(7	2.4	(3)	P(1) - C(51)	187(1)	
021	0.2221(8)	0.4440(7)	0.5613(5)	3.9	(2)			
C22	0,4935(11)	0.3284(10)	0.5086(7	2.7	(2)	Ru(1) = C(11)	187(1)	
022	0.5905(8)	0.3705(8)	0.5243(5)) 4.3	(2)	Ru(1) - C(12)	194(1)	
C23	0.3402(10)	0.1505(9)	0.5675(6)) 2.2	(2)	Bu(1) - C(13)	191(1)	
023	0.3396(7)	0.0885(7)	0.6159(4)) 3.4	(2)			
C31	0.3617(10)	0.2039(10)	0.2891(6	2.2	(2)	Ru(2) - C(21)	185(1)	
031	0.4209(7)	0.2244(6)	0.2465(4)) 3.0	(2)	Ru(2) - C(22)	193(1)	
C32	0.4418(9)	0.1221(9)	0.4246(6)	1.8	(2)	$P_{11}(2) = G(22)$	102(1)	
032	0.5455(6)	0.0990(6)	0.4565(4)	2.2	(1)	Ru(2) = C(23)	(93(1)	
C41	0.1343(10)		0.2957(6	,	(2)	Ru(1) - C(31)	246(1)	
C43	0.3243(11)	-0.0242(11)	0.2807(7)	,	(3)	Bu(2) = C(32)	245(1)	
C44	0.3269(11)	-0.0661(11)	0.3550(7	3.4	(3)			
C45	0,2096(11)	-0.0457(10)	0.3655(6	2.9	(2)	Mn(1) = C(31)	180(1)	
C51	-0.0093(9)	0.1847(9)	0.3858(6	1.8	(2)	Mn(1) - C(32)	182(1)	
C52	-0.1003(10)	0.2176(9)	0.3063(6)) 2.2	(2)			
C53	-0.2340(11)	0.1892(10)	0.3071(7)) 2.9	(2)			
C54	-0.2647(11)	0.2502(10)	0.3736(7)) 3.0	(2)	Ru(1) - Mn(1) -	- Ru(2) 59	.60(4)
C55	-0.1720(11)	0.2207(11)	0.4523(7	3.3	(3)			
C56	-0.0377(10)	0.2521(9)	0.4535(6)) 2.4	(2)	Mn(1) - Ru(1) -	Ru(2) 60).38(4)
Anico	trope Temperat	urfaktoren b)		······		Mn(1) - Ru(2)	Ru(1) 60).01(4)
Anton	n n	D	D	D	Б	Mn(1) + C(31) -	Ru(1) 81	.7(4)
	<u>^P11 ^P22</u>	<u>2 ³33 </u>	^B 12	^D 13	^D 23	Mn(1) - C(32) -	Ru(2) 82	2.4(4)
Ru 1	2.00(4) 1.9	0(4) 2.06(4)	-0.10(3)	0.84(3)	0.11(3)) Mn(1) - P(1) -	.C(51) 131	.1(3)
Ru2	1.96(4) 2.1	8(4) 1.75(4)	-0.11(3)	0.65(3)	-0.33(3)) Ru(1) - P(1) -	C(51) 134	1.6(3)
Mn 1 D1	1.48(7) 1.2	3/(7) = 1.22(7) 3/(13) = 1.40(11)	-0.03(6)	0.59(5)	-0.28(5)) $P_{11}(2) = P(1) =$	C(51) 134	1.5(3)
r 1	1.29(12) 1.1	1.40(11)	-0.22(10)	0.57(9)	-0.04(9)	j = Ku(2) - F(1) - F(1)	0,017 104	

Tab. 4. Strukturparameter von 4a^{a)}

a) In Klammern Standardabweichungen der letzten angegebenen Dezimale. – b) Der Temperaturfaktor T ist gegeben durch $T = \exp[-1/4(B_{11}h^2a^{*2} + B_{22}k^2b^{*2} + B_{33}l^2c^{*2} + 2B_{12}hka^*b^* + 2B_{13}hla^*c^* + 2B_{23}klb^*c^*]$; B, B_{ij} in 10⁴ pm².

Der mittlere Eisen-Kohlenstoff-Abstand zu den terminalen CO-Gruppen beträgt bei 2d 176.9 pm (173.3 pm bei der Phenylverbindung¹⁾). Die an das Manganatom gebundenen Carbonylgruppen bilden stark unsymmetrische Brücken zu den Eisenatomen aus: Mn(1) - C(31) 182 (1), Mn(1) - C(32) 182 (1), Fe(1) - C(32) 238 (1), Fe(2) - C(31) 229 (1) pm.

Die Tatsache, daß hier wie im Phenylanalogen ungleiche Abstände der Eisenatome von den Brückencarbonylkohlenstoffatomen beobachtet werden, läßt darauf schließen, daß die lockeren Brückenbeziehungen insgesamt nur wenig zum Energie-Haushalt der Komplexe beitragen: Verzerrungen, die der unsymmetrischen Umgebung der Cluster im Gitter entsprechen, sind offenbar ohne wesentlichen Energieaufwand möglich. Die gefundene Brückenanordnung entspricht damit vermutlich mindestens ebenso den sterischen Erfordernissen im Cluster, wie sie möglicherweise zu einer Stabilisierung des Gesamtsystems beiträgt.

Der P(1)-C(1)-Abstand des Phosphoratoms zu dem sp³-Kohlenstoff der Cyclohexylgruppe liegt mit 184 (1) pm im erwarteten Bereich und ist um ca. 6 pm länger als der P-C_{sp²}-Abstand im Cluster η^{5} -C₅H₅(CO)₂MnFe₂(CO)₆PC₆H₅^{1,15}. Im Rutheniumcluster 4 entspricht die Anordnung der drei Metallatome und des Phosphoratoms ziemlich exakt einer trigonalen Pyramide. Alle drei Metall-Metall-Bindungen sind nahezu gleich lang, ebenso die Metall-Phosphor-Bindungen.

Der mittlere Abstand der Rutheniumatome zu den Kohlenstoffatomen der terminalen CO-Liganden beträgt 190.4 pm. Ähnliche mittlere Ru – C_{CO} -Abstände (189.4 pm) findet man auch bei dem später noch zu diskutierenden Nonacarbonyl- μ_3 -(cyclohexylphosphiniden)- μ -hydrido-triruthenium-Cluster **5a**. Wie bei **2d** und η^5 - $C_5H_5(CO)_2$ -MnFe₂(CO)₆PC₆H₅¹⁾ bilden die an das Manganatom gebundenen Carbonylgruppen stark unsymmetrische Brücken zu den beiden Rutheniumatomen aus: Mn(1) – C(31) 180 (1), Mn(1) – C(32) 182 (1), Ru(2) – C(32) 245 (1), Ru(1) – C(31) 246 (1) pm. Wegen dieser strukturellen Analogie zu den beiden Eisenclustern sollte auch für **4** eine ähnliche Reaktivität bezüglich der reversiblen Öffnung der Metall-Metall-Bindungen durch Substrate wie z. B. Phosphane, Arsane und Stibane zu erwarten sein³.

Homometallische Cluster 5

Bei der Darstellung der Mangan-Ruthenium-Cluster 4 aus $Ru_3(CO)_{12}$ und 3 konnte aus dem Reaktionsgemisch eine weitere, dreikernige μ_3 -RP-Trirutheniumverbindung isoliert werden, der nach der Röntgenstrukturanalyse die Struktur 5 zukommt. Wegen der strukturellen Analogie zum Eisencluster Fe₃(CO)₉(H₂)PR²⁾ ist für 5 eine ähnliche Reaktivität zu erwarten wie für die analogen Eisenverbindungen⁶⁾.

Daher wurde nach einem verbesserten Zugang zu Clustern vom Typ 5 gesucht. Es zeigte sich dabei, daß 5 auch auf direktem Wege, nämlich aus primären Phosphanen RPH₂ und Ru₃(CO)₁₂, mit größeren Ausbeuten (ca. 40-50%) dargestellt werden kann⁷⁾. Auf gleiche Weise wurden vor kurzem die zu 5 analogen Eisencluster erhalten²⁾.

Die leuchtend gelb glänzenden, luftstabilen Kristalle von 5 lösen sich nicht in Wasser und Alkoholen, gut dagegen in allen anderen gebräuchlichen organischen Lösungsmitteln.

Das Vorliegen eines μ_3 -RP-Liganden wird im ³¹P-NMR-Spektrum (in Toluol rel. H_1PO_4 mit $\delta(P(OMe)_1)$ 139 ppm) durch jeweils ein scharfes Singulett im charakteristischen Bereich um 300 ppm (328 ppm für 5a und 279 ppm für 5b) angezeigt. Im ¹H-NMR-Spektrum (in [D₈]Toluol rel. ext. TMS) findet man Resonanzsignale für die Reste R (5a: 1.8 ppm (m) 11 H, 5b: 7.2 ppm (m) 5H) und für die beiden Brückenwasserstoffatome, die durch Kopplung zum Phosphorkern zum Dublett aufgespalten sind (5a: -19 ppm (d) 2H, $J_{PH} = 16$ Hz; 5b: -18.2 ppm (d) 2H, $J_{PH} = 16$ Hz). Ähnliche chemische Verschiebungen beobachtet man auch für die Brückenwasserstoffatome (ca. -24 ppm) in den bereits erwähnten Di-µ-hydrido-trieisen-Clustern Fe₁(CO)₆(H₂)PR²). Im Massenspektrum der Verbindungen 5 treten jeweils der Molekülpeak sowie die durch sukzessive Abspaltung der 9 CO-Gruppen entstehenden Fragment-Ionen neben den jeweils um ein oder zwei H-Atome ärmeren Ionen auf. Charakteristisch sind weiterhin Signale für die Ionen Ru₃P⁺, Ru₃PH₂⁺, Ru₂PR⁺ und RuPR⁺. Die IR-Spektren im v_{CO} -Bereich zeigen ähnlich wie Fe₃(CO)₉(H₂)PR sechs Banden, die ihrer Lage und Intensität nach nahezu gleich sind (5a: 2106 (m), 2072 (s), 2046 (vs), 2015 (s), 1997 (m), 1984 (w) cm⁻¹; **5b**: 2104 (m), 2069 (s), 2042 (vs), 2010 (s), 1993 (m), 1980 (w) cm⁻¹), so daß die für 5a durch Strukturanalyse ermittelte Anordnung der 9 CO-Gruppen auch in 5b praktisch unverändert vorliegen dürfte.

Röntgenstrukturanalyse von 5a*)

Die Lage der Brücken-H-Liganden wurde über Differenz-Elektronendichte-Synthesen ermittelt und über die Ortskoordinaten sowie die isotropen Temperaturparameter verfeinert. Die Daten zur Strukturanalyse sind in Tab. 2 zusammengefaßt. Eine Ansicht des Moleküls zeigt Abb. 2, die Strukturparameter sind in Tab. 5 und 6 wiedergegeben.

Abb. 2. Projektion der Struktur von 5a

In Übereinstimmung mit den spektroskopischen Daten bindet der Phosphor des μ_3 -C₆H₁₁P-Restes drei Rutheniumatome, so daß ein trigonal-pyramidales Cluster-Gerüst entsteht. Von den drei Ru-Atomen an der Basis der trigonalen Pyramide trägt jedes drei terminale Carbonylgruppen. Die Rutheniumatome sind durch Metall-Metall-Bindungen untereinander verknüpft, wobei zwei dieser Ru – Ru-Bindungen von Wasserstoff-Liganden überbrückt sind. In Analogie zum entsprechenden Eisencluster Fe₃(CO)₉(H₂)PPh² sind somit die Rutheniumatome unterschiedlich koordiniert. Während von Ru(2) und Ru(3) jeweils nur eine Metall-Wasserstoff-Bindung ausgeht, ist Ru(1) mit zwei H-Atomen verbunden. Näherungsweise gehorcht die Anordnung der Atome in der Ru₃(CO)₉(H₂)P-Einheit einer idealisierten Spiegelsymmetrie mit einer Spiegelebene durch P(1), Ru(1) und die Mitte der Ru(2) – Ru(3)-Bindung. Bedingt durch die unterschiedlichen Koordinationsverhältnisse an den drei Metallatomen beobachtet man eine Verzerrung der trigonalen Pyramide.

Das Vorliegen zweier verschiedener Sorten von Rutheniumatomen im Cluster wird auch durch unterschiedliche Ru – Ru- und Ru – P-Abstände angezeigt, die sich in den beiden kristallographisch unabhängigen Molekülen von 5a in gleicher Weise zeigen. Die Metall-Metall-Bindung zwischen Ru(2) und Ru(3), die keine Wasserstoff-Brücke trägt, ist mit 283.0 (1) pm (bzw. 283.3 (1) pm in Molekül II) deutlich kürzer als die bei-

^{*)} Siehe Fußnote auf Seite 992.

den anderen, H-verbrückten Ru – Ru-Bindungen, die innerhalb der Fehlergrenzen in beiden Molekülen gleich lang sind (294.2 pm). Ganz ähnliche Unterschiede werden für den analogen Eisencluster $Fe_3(CO)_9(H_2)PPh^{2)}$ beobachtet. Diese Beobachtungen entsprechen der Regel, nach der H-verbrückte Metall-Metall-Bindungen grundsätzlich länger sein sollten als die Abstände der einfachen Metall-Metall-Bindungen^{8,9)}. Dementsprechend sind ähnliche Abstandsunterschiede auch für andere dreikernige Rutheniumverbindungen bekannt¹⁰⁻¹⁴⁾.

Die P-Ru-Abstände für Ru(2) und Ru(3), die mit jeweils nur einem H-Atom in Wechselwirkung stehen, betragen im Mittel 228.9 (228.5 (3) – 229.1 (3) pm), während die entsprechende Bindungslänge von Ru(1), das an zwei Wasserstoffatome gebunden ist, 233.1 (3) pm (bzw. 233.3 (3) pm, Molekül II) beträgt und damit um ca. 4 pm länger ist. Ähnliche Verhältnisse findet man auch bei $Fe_3(CO)_9(H_2)PPh$.

Wie in Fe₃(CO)₉(H₂)PPh sollten sich die unterschiedlichen Koordinationsverhältnisse an den drei Metallatomen auch in **5a** in den Ru – C_{CO} -Abständen widerspiegeln. Beim Trieisenkomplex sind die mittleren Bindungslängen der beiden niedriger koordinierten Eisenatome zu den Kohlenstoffatomen der CO-Liganden untereinander gleich lang und betragen im Mittel 179 pm, während die Abstände des Fe-Atoms mit der höheren Koordinationszahl zu den C_{CO}-Atomen mit durchschnittlich 181 pm etwas länger erscheinen. Bei dem Rutheniumcluster **5a** ist dieser Unterschied noch weniger ausgeprägt. So beträgt der mittlere Ru – C_{CO}-Abstand für das siebenfach koordinierte Ru-

Lagepar	ameter ^{b)}								- / -	
Atom	x/a	d\Y	z/	c	В	Atom	x/a	у/в	z/c	в
Ru1 Ru2 Ru3 C11 C12 C12 C12 C13 C12 C21 C21 C21 C22 C23 C31 C32 C33 C31 C32 C33 C31 C32 C33 C31 C32 C33 C32 C33 C33 C33 C33 C33 C33 C33	-0.0074(1) 0.1834(1) 0.1854(1) 0.0189(2) -0.0788(9) -0.1258(7) 0.0282(7) -0.2189(7) 0.0282(7) -0.2189(7) 0.2338(9) 0.3074(7) 0.3074(7) 0.03074(7) 0.0302(9) 0.0302(9) 0.1784(9) 0.1784(9) 0.1784(9) 0.1784(9) 0.1784(7) 0.1784(7) 0.1784(7) 0.1784(7) 0.199(1) 0.2056(13) -0.2056(13) -0.2056(15) -0.2056(14) -0.2056(15) -0.2056(14) -0.2056(15) -0.2056(14) -0.2056(15) -0.2056(14) -0.2056(14) -0.2056(15) -0.2056(14)	0.7954 0.6360 0.8524 0.9236 1.0019 0.8012 0.8012 0.59780 0.59780 0.59780 0.59780 0.59780 0.59780 0.59780 0.59780 0.59780 0.59780 0.59780 0.59780 0.59644 1.0018 1.0018 1.0018 0.83248 1.0020 0.83248 1.0020 0.83248 0.83248 0.83248 0.83248 0.83248 0.83248 0.83248 0.83248 0.83248 0.83248 0.83248 0.83248 0.83248 0.83248 0.8314000000000000000000000000000000000000	2/ 1) 0. 1) 0. 2) 1. 2) 0. 2) 0. 2) 1. 2) 0. 2) 0.	2 1014(1) 1959(1) 2652(2) 1252(2) 1226(8) 1357(6) 0226(8) 1032(6) 0534(8) 0223(6) 1357(8) 1306(8) 0214(8) 1305(8) 3873(9) 4643(7) 2990(8) 3165(6) 2154(8) 1879(6) 3427(7) 33590(12) 4260(13) 3894(12)	3.1(2) 5.1(2) 3.0(2) 4.8(2) 4.7(2) 3.1(2) 3.1(2) 3.3(2) 5.3(2) 3.4(2) 5.3(2) 3.4(2) 5.4(2) 3.4(2) 5.4(2) 3.1(2) 4.8(2) 3.0(2) 5.2(2) 3.1(2) 4.8(2) 3.1(2) 4.8(2) 5.3(2) 5.4(2)	Ru4 Ru5 Ru6 C41 C41 C41 C42 C43 C42 C43 C43 C51 C51 C51 C51 C51 C53 C61 C62 C63 C61 C62 C63 C61 C62 C63 C15 C15 C15 C17	0.5532(1) 0.4495(1) 0.5251(1) 0.5251(1) 0.5287(7) 0.5287(7) 0.55822(1) 0.5705(10) 0.7203(10) 0.5380(9) 0.5280(9) 0.5380(9) 0.5380(9) 0.3385(9) 0.3385(9) 0.3385(9) 0.33282(8) 0.33282(8) 0.6758(9) 0.5758(2) 0.4220(10) 0.5382(8) 0.6758(9) 0.4220(10) 0.5382(8) 0.6758(9) 0.4220(10) 0.5382(8) 0.5758(10) 0.5382(8) 0.5382(8) 0.5382(8) 0.5758(10) 0.5382(10) 0	0.6423(1) 0.7048(1) 0.8599(1) 0.7211(2) 0.4916(9) 0.4009(7) 0.6494(11) 0.6545(9) 0.6545(9) 0.7058(7) 0.7058(7) 0.7058(7) 0.7058(7) 0.7058(7) 0.4946(7) 0.4946(7) 0.4946(7) 0.4946(7) 0.4946(7) 0.4946(7) 0.4946(7) 0.4946(7) 0.4946(7) 0.4946(7) 0.4946(7) 0.4946(7) 0.4946(7) 0.4946(7) 0.4946(7) 0.4946(7) 0.492(16) 0.5722(16) 0.7722(16) 0.7824(12) 0.7820(11)	0.7381(1) 0.9014(1) 0.8007(1) 0.7392(2) 0.7084(8) 0.6952(6) 0.5310(9) 0.5310(9) 0.7835(8) 0.8089(6) 1.0318(8) 1.0318(8) 1.03949(6) 0.9461(8) 0.9461(8) 0.9461(8) 0.946(6) 0.8867(8) 0.6631(9) 0.6612(7)	3.4(2) 5.4(2) 5.0(3) 3.4(2) 4.8(2) 4.7(2) 5.0(2) 2.9(2) 5.0(2) 3.8(3) 6.2(2) 3.1(2) 4.5(3) 5.6(3) 5.6(3) 5.6(2) 2.1(2) 4.7(3) 5.7(3) 5.7(3)
C5 C6 HR12 HR13	-0.2558(13) -0.1752(11) 0.062 (9) 0.121 (9)	0.7256 0.7105 0.677 0.869	13) 0. 11) 0. 9) 0. 9) 0.	3787(12) 3060(10) 084 (8) 146 (8)	6.7(4) 5.0(3) 8.3(28) 4.1(28)	C18 C19 HR45 HR56	0.0869(11) 0.2012(10) 0.556(9) 0.529(9)	0.5863(11) 0.6006(10) 0.640(8) 0.829(9)	0.6019(10) 0.6665(9) 0.857(8) 0.905(8)	5.0(3) 4.0(3) 3.1(28 4.9(28
		Anisot	rope Temp	eraturfakto:	ren b)					
		Atom	B ₁₁	B22	^B 33	^B 12	B ₁₃	B ₂₃		
		Ru1 Ru2 Ru3 P1 Ru4 Ru5 Ru6 P2	2.01(4) 2.53(4) 1.89(4) 1.61(12) 1.88(4) 1.86(4) 2.07(4) 1.23(12)	2.82(4) 2.73(4) 3.10(4) 2.32(13) 3.75(5) 2.69(4) 3.00(4) 2.34(13)	2.31(4) 2.74(4) 2.53(4) 1.90(13) 2.46(4) 2.22(4) 2.97(4) 2.01(13)	-0.20(3) 0.29(3) -0.40(3) -0.17(10) 0.18(3) 0.22(3) -0.55(3) -0.25(10	0.47(3) 0.85(3) 0.55(3) 0.46(10) 0.46(3) 0.39(3) 0.14(3) 0.06(10)	0.62(3) 0.59(3) 0.33(3) 0.40(10) 0.28(3) 0.66(3) 0.92(3) 0.49(10)		

Tab. 5. Lageparameter von 5a^{a)}

a) In Klammern Standardabweichungen der letzten angegebenen Dezimale. – b) Der Temperaturfaktor T ist gegeben durch $T = \exp[-1/4(B_{11}h^2a^{*2} + B_{22}k^2b^{*2} + B_{33}l^2c^{*2} + 2B_{12}hka^*b^* + 2B_{13}hla^*c^* + 2B_{23}klb^*c^*)]; B, B_{ij}$ in 10⁴ pm².

Abstäi	nđi	e und N	Wir	nkel (<u>r</u>	om bzw. ^O)						
	ı	Molekü	1 3				м	olekül	IJ		
Ru(1)	-	Ru (2)		293.	I (1)	Ru (5)	-	Ru (4)		295.	3(1)
Ru(1)	-	Ru (3)		295.3	3(1)	Ru (5)	-	Ru (6)		293.	D(1)
Ru(2)	-	Ru (3)		283.0	0(1)	Ru (4)	-	Ru(6)		283.	3(1)
Ru(1)	-	P(1)		233.	1(3)	Ru(4)	-	P(2)		228.	8(3)
Ru(2)	-	P(1)		229.	(3)	Ru (5)	-	P(2)		233.	3 (3)
Ru(3)	-	P(1)		229.	1(3)	Ru(6)	-	P(2)		228.	5(3)
Ru(1)	-	H(12)		170(*	11)	Ru(5)	-	H(45)		170 (11)
Ru(1)	-	н(13)		180 ((1)	Ru(5)	-	н(56)		190(11)
Ru(2)	-	н(12)		180(*	10)	Ru(4)	-	H(45)		170(10)
Ru(3)		н(13)		180(1)	Ru(6)	-	H(56)		160 (10)
Ru(1)		C(12)		194()	Ru(4)	-	C(43)		192 (1)
Ru(2)	-	C(21)		192 ()	Ru(5)	-	C(51)		197(1)
Ru (2)	-	C(33)		192(1)	Ru(6)	-	C(62)		193(1)
Ru(1)	-	C(11)		188(Ď.	Ru(4)	-	C(41)		190 (1)
Ru(1)	-	C(13)		187 ()	Ru(4)	-	C(42)		183(1)
Ru (2)	-	C(22)		189(1	L) -	Ru(5)	-	C(52)		187(1)
Ru(2)	-	C(23)		185(1)	Ru(5)	-	C(53)		189(1)
Ru(3)	-	C(31)		186(*	1)	Ru(6)	-	C(61)		186(1)
Ru(3)	-	C(32)		189 ()	Ru(6)	-	C(63)		191(1)
Ru (2)	_	Ru(1)	-	Ru (3)	57.50(3)	Ru(5)	-	Ru (4)	-	Ru(6)	60.82(3)
Ru(1)	-	Ru(2)	-	Ru(3)	61.64(3)	Ru(4)	-	Ru(5)	-	Ru(6)	57.58(3)
Ru (1)	-	Ru (3)	-	Ru(2)	60.86(3)	Ru (4)		Ru(6)	-	Ru(5)	61.60(3)
Ru(1)	-	H(12)	-	Ru(2)	116.48(4)	Ru (4)	-	H(45)	-	Ru(5)	115.87(4)
Ru(1)	-	H(13)	-	Mn(3)	112.12(4)	Ru(5)	-	H(56)	-	Ru(6)	113.14(4)

Tab. 6. Abstände und Winkel von 5a

Atom 189.1 pm, für die achtfach koordinierten Rutheniumatome 190.1 pm. Der Unterschied ist damit kaum signifikant.

Die systematischen Abweichungen einzelner Abstands- und Winkelwerte von einer dreizähligen Symmetrie deuten die Lage der H-Brückenliganden zwischen den Ru-Atomen Ru(1), Ru(2) und Ru(1), Ru(3) (bzw. Ru(5), Ru(4) und Ru(5), Ru(6) in Molekül II) an, die in der Struktur zudem zweifelsfrei lokalisiert werden konnten.

Die Wasserstoff-Brückenatome, deren Lage- und Temperaturparameter verfeinert wurden, liegen im Mittel 73 pm (H(12) 73, H(13) 73 pm bzw. 73, 75 pm in Molekül II) unterhalb der von den drei Rutheniumatomen aufgespannten Basisfläche auf der Außenseite des Clusters. Im analogen Eisencluster $Fe_3(CO)_9(H_2)PPh$ beträgt der mittlere Abstand von der Grundfläche 55 pm²). Während aber bei der Eisenverbindung unsymmetrische H-Brücken vorzuliegen scheinen, sind in **5a** alle Ru – H-Abstände innerhalb der Fehlergrenzen gleich lang. Die Beobachtung, daß der mittlere Ru – H-Abstand mit 175 pm um 14 pm länger ist als der Fe – H-Abstand, läßt sich durch den vergleichsweise größeren Radius des Rutheniumatoms deuten. Auch in anderen dreikernigen Ru-Clustern mit Brücken-H-Liganden werden ähnlich große Metall-Wasserstoff-Abstände beobachtet^{8,9}).

Der Abstand des Phosphoratoms zum sp³-Kohlenstoff, P(1) – C(1), ist mit 184 (1) pm normal¹⁵⁾ und damit erwartungsgemäß um ca. 5 pm länger als der P – C_{sp} -Abstand im Cluster Fe₃(CO)₉(H₂)PPh²⁾.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Förderung dieser Arbeit. Frau R. Naserke sind wir für die Durchführung der Elementaranalysen dankbar.

Experimenteller Teil

Alle Umsetzungen wurden unter N₂ als Schutzgas mit frisch destillierten und absolutierten Reagentien durchgeführt. Zur Chromatographie diente eine kühlbare Säule (20×2.5 cm, Kieselgel Merck 0.063 - 0.200 mm, *n*-Pentan).

¹H-NMR-Spektren: Bruker WP 80 CW-Gerät, 30 °C (Standard TMS intern). – ³¹P-NMR-Spektren: Bruker WP 80 FT-Gerät (Standard rel. ext. 85proz. H_3PO_4 mit $\delta(P(OMe)_3) =$ 139 ppm). – IR-Spektren: Zeiss IR-Spektralphotometer IMR 40, CaF₂-Küvetten (*n*-Hexan). – Massenspektren: Varian MAT-112 und Varian MAT-312. – Für die photochemischen Umsetzungen wurde eine UV-Lampe Typ Hanau TQ 150 verwendet.

Ausgangssubstanzen

Dicarbonyl(η^5 -cyclopentadienyl)(dichlorethylphosphan)mangan (1a): 5.0 g (24.5 mmol) Tricarbonyl(cyclopentadienyl)mangan werden in 400 ml THF gelöst und in einer Duran-Apparatur 3 h mit einer UV-Lampe bestrahlt. Anschließend wird mit 2.36 g (18 mmol) Cl₂PC₂H₅¹⁶) versetzt und 12 h gerührt, wobei sich die rote Lösung des η^5 -C₅H₅(CO)₂MnTHF-Komplexes langsam gelb färbt. Nach Entfernen des Lösungsmittels i. Hochvak. wird der ölige Rückstand in 100 ml n-Pentan aufgenommen und die Lösung auf - 80 °C abgekühlt. Die überstehende Lösung wird dekantiert und aus dem gelben kristallinen Rückstand das unumgesetzte n⁵-C₅H₅(CO)₃Mn bei 20°C an einen wassergekühlten Finger sublimiert. Das verbleibende gelbe Rohprodukt, das noch einen farblosen unlöslichen Feststoff enthält, wird in 40 ml Toluol gelöst und über eine mit Silicagel beschichtete Fritte filtriert. Anschließend engt man das Filtrat ein, überschichtet mit 10 ml n-Pentan und kühlt auf -80 °C ab. Nach Dekantieren werden die gelben Kristalle i. Hochvak, bei Raumtemp. getrocknet. Schmp. 31 °C, Ausb. 4.6 g (61%, bez. auf $C_5H_5(CO)_3Mn$). – ¹H-NMR $([D_6]Aceton): \delta = 1.5 \text{ (m) } 3\text{ H}, 2.7 \text{ (m) } 2\text{ H}, 4.5 \text{ (d) } 5\text{ H} (J_{PH} = 2 \text{ Hz}). - {}^{31}P-NMR \text{ (Toluol): } \delta =$ 242. - IR: $v_{CO} = 1974$ (s), 1918 (ss) cm⁻¹. - MS [*m/e* (rel. Int.)]: M⁺ 307 (8), M⁺ - Cl 272 (11), $M^+ - 2 CO 251$ (8), $M^+ - 2 CO$, - Cl 216 (20), $M^+ - 2 CO$, - 2 Cl 181 (28), $C_5H_5Mn^+$ 120 (100).

C₉H₁₀Cl₂MnO₂P (307.0) Ber. C 35.18 H 3.26 P 10.10 Gef. C 35.32 H 3.27 P 10.42

(Butyldichlorphosphan)dicarbonyl(η^5 -cyclopentadienyl)mangan (1b): Wie bei 1a werden zu dem η^5 -C₅H₅(CO)₂MnTHF-Komplex 2.86 g (18 mmol) *n*-C₄H₉PCl₂¹⁶) gegeben. Es wird 12 h gerührt. Nach Reinigung des Rohprodukts erhält man gelbe Kristalle, die in Substanz kaum luftempfindlich sind. Schmp. 47 °C, Ausb. 4.2 g (51%, bez. auf C₅H₅(CO)₃Mn). – ¹H-NMR ([D₆]Aceton): $\delta = 2.6$ (m) 9H, 4.3 (d) 5H ($J_{PH} = 2.1$ Hz). – ³¹P-NMR (Toluol): $\delta = 239$. – IR: $v_{CO} = 1976$ (s), 1914 (ss) cm⁻¹. – MS [*m*/e (rel. Int.)]: M⁺ 335 (9), M⁺ – Cl 300 (16), M⁺ – 2 CO 279 (12), M⁺ – 2 CO, – Cl 244 (29), M⁺ – 2 CO, – 2 Cl 209 (44), C₅H₅Mn⁺ 120 (100).

 $C_{11}H_{14}Cl_2MnO_2P$ (335.1) Ber. C 39.40 H 4.18 P 9.24 Gef. C 39.57 H 4.17 P 9.19 (*tert-Butyldichlorphosphan)dicarbonyl*(η^5 -cyclopentadienyl)mangan (1c): 2.86 g (18 mmol) *t*-C₄H₉PCl₂¹⁶) werden analog 1a mit dem C₅H₅(CO)₂MnTHF-Komplex umgesetzt. Nach entsprechender Aufarbeitung und Reinigung des Rohprodukts erhält man leuchtend gelbe Kristalle, Schmp. 52 °C, Ausb. 3.8 g (46%, bez. auf C₅H₅(CO)₃Mn). - ¹H-NMR ([D₆]Aceton): δ = 1.45 (d) 9H (J_{PH} = 20 Hz), 4.6 (d) 5H (J_{PH} = 1.6 Hz). - ³¹P-NMR (Toluol): δ = 273. - IR: v_{CO} = 1978 (m), 1972 (s), 1924 (m), 1914 (ss) cm⁻¹. - MS [*m/e* (rel. Int.)]: M⁺ 335 (10), M⁺ - Cl 300 (19), M⁺ - 2 CO 279 (11), M⁺ - 2 CO, - Cl 244 (33), M⁺ - 2 CO, - 2 Cl 209 (46), C₅H₅Mn⁺ 120 (100).

C₁₁H₁₄Cl₂MnO₂P (335.1) Ber. C 39.40 H 4.18 P 9.24 Gef. C 39.56 H 4.11 P 9.38

Dicarbonyl(η^5 -cyclopentadienyl)(dichlorisopropylphosphan)mangan (1f): 2.61 g (18 mmol) *i*-C₃H₂PCl₂¹⁶) werden wie bei 1a mit C₅H₅(CO)₂MnTHF umgesetzt. Nach Aufarbeitung und Reinigung des Rohprodukts erhält man gelbe Kristalle, Schmp. 49 °C, Ausb. 4.1 g (52%), bez. auf C₅H₅(CO)₃Mn). – ¹H-NMR ([D₆]Aceton): δ = 1.6 (dd) 6H, 2.25 (m) 1H, 4.6 (d) 5H (J_{PH} = 1.8 Hz). – ³¹P-NMR (Toluol): δ = 254. – IR: v_{CO} = 1981 (m), 1974 (s), 1926 (m), 1917 (ss) cm⁻¹. – MS [*m/e* (rel. Int.)]: M⁺ 321 (7), M⁺ – Cl 286 (14), M⁺ – 2 CO 265 (12), M⁺ – 2 CO, – Cl 230 (28), M⁺ – 2 CO, – 2 Cl 195 (36), C₅H₅Mn⁺ 120 (100).

C10H12Cl2MnO2P (321.0) Ber. C 37.38 H 3.74 P 9.66 Gef. C 37.34 H 3.66 P 9.87

Dicarbonyl(η^5 -cyclopentadienyl)/(4-methoxyphenyl)phosphanJmangan (3e): Entsprechend 1a werden 2.5 g (18 mmol) p-CH₃OC₆H₄PH₂¹⁷⁾ mit dem C₅H₅(CO)₂MnTHF-Komplex 12 h im Dunkeln gerührt. Nach Entfernen des Lösungsmittels i. Hochvak. wird der teils viskose, teils feste rote Rückstand in 40 – 50 ml Toluol gelöst und über eine mit Silicagel beschichtete Fritte filtriert. Anschließend engt man das Filtrat ein und sublimiert von dem öligen Rückstand das unungesetzte C₅H₅(CO)₃Mn bei ca. 30 °C an einen wassergekühlten Kühlfinger. Aus dem verbleibenden roten viskosen öl kristallisiert **3e** in Form von großen orangefarbenen Kristallen. Schmp. 26 °C, Ausb. 4.2 g (54%, bez. auf C₅H₅(CO)₃Mn). – ¹H-NMR ([D₈]Toluol): δ = 4.0 (s) 3H, 4.82 (d) 5H (J_{PH} = 1.8 Hz), 8.2 (m) 2H, 8.54 (m) 2H, 4.65 (dd) 2H (J_{PH} = 327, J_{HH} = 5.2 Hz). – ³¹P-NMR (Toluol): δ = -2. – IR: v_{CO} = 1948 (s), 1934 (ss) cm⁻¹. – MS [m/e (rel. Int.)]: M⁺ 316 (19), M⁺ – 2H 314 (32), M⁺ – CH₃OC₆H₄ 209 (25), M⁺ – 2 CO 260 (34), C₅H₅Mn⁺ 120 (100).

C14H14MnO3P (316.2) Ber. C 53.13 H 4.43 P 9.81 Gef. C 53.34 H 4.41 P 10.24

Heterometallische Cluster

Di- μ -carbonyl- $(n^5$ -cyclopentadienyl)- μ_3 -(ethylphosphiniden)-bis(tricarbonyleisen)mangan-(Fe – Fe) (2a): 3.0 g (8.25 mmol) Fe₂(CO)₉ werden in einer Lösung von 1.23 g (4.0 mmol) 1a in 100 ml Toluol suspendiert und 48 h bei 35 °C gerührt. Nach Abfiltrieren des entstandenen braunen Niederschlages erhält man eine rote Lösung, die mit ca. 3 g Silicagel versetzt und bei 20 °C bis zur Rieselfähigkeit des Silicagels eingeengt wird. Das mit den Reaktionsprodukten beladene Kieselgel wird bei -25 °C auf eine Säule gebracht und chromatographiert. Mit *n*-Pentan wäscht man eine grüne Zone aus, mit *n*-Pentan/Toluol (5:1) folgen eine rote und eine gelbbraune Zone. Alle drei Zonen enthalten insgesamt nur sehr wenig Substanz. Mit *n*-Pentan/Toluol (2:1) eluiert man eine breite dunkelgrüne Zone¹⁸⁾. Anschließend kann mit *n*-Pentan/Toluol (1:1) eine breite dunkelrote Zone erhalten werden, aus der nach Abziehen des Lösungsmittels und Umkristallisieren aus *n*-Hexan/Toluol (9:1) 2a in Form rotbrauner Kristalle anfällt. Schmp. 182 °C (Zers.), Ausb. 340 mg (17%, bez. auf 1a).

> $C_{15}H_{10}Fe_2MnO_8P$ (515.9) Ber. C 34.93 H 1.95 Fe 21.65 P 6.00 Gef. C 35.18 H 1.99 Fe 21.42 P 6.35 Molmasse 516 (MS, bez. auf ⁵⁶Fe)

 μ_3 -(Butylphosphiniden)-di- μ -carbonyl-(η^5 -cyclopentadienyl)bis(tricarbonyleisen)mangan-(Fe - Fe) (2b): 3.0 g (8.25 mmol) Fe₂(CO)₉ werden mit 1.34 g (4.0 mmol) 1b in 100 ml Toluol 12 h bei 40 °C gerührt. Die Aufarbeitung des dunkelroten Reaktionsgemisches wird wie bei 2a beschrieben durchgeführt. 2b wird mit *n*-Pentan/Toluol (1:1) als breite, rote Zone eluiert, aus der man nach Abziehen des Lösungsmittels und Umkristallisieren aus *n*-Hexan/Toluol (9:1) rotbraune Kristalle erhält, Schmp. 170 °C (Zers.), Ausb. 410 mg (19%, bez. auf 1b).

> $C_{17}H_{14}Fe_2MnO_8P$ (543.9) Ber. C 37.54 H 2.59 Fe 20.54 P 5.69 Gef. C 37.42 H 2.54 Fe 20.29 P 5.83 Molmasse 544 (MS, bez. auf ⁵⁶Fe)

 μ_3 -(tert-Butylphosphiniden)-di- μ -carbonyl-(η^5 -cyclopentadienyl)bis(tricarbonyleisen)mangan-(Fe – Fe) (2c): Analog 2a werden 3.0 g (8.25 mmol) Fe₂(CO)₉ mit 1.34 g (4.0 mmol) 1c in Toluol 24 h bei 45 °C gerührt. Nach entsprechender Aufarbeitung wird bei der Chromatographie 2c mit *n*-Pentan/Toluol (1:1) eluiert. Rotbraune Kristalle, Schmp. 192 °C, Ausb. 84 mg (4%, bez. auf 1c).

> $C_{17}H_{14}Fe_2MnO_8P$ (543.9) Ber. C 37.54 H 2.59 Fe 20.54 P 5.69 Gef. C 37.73 H 2.65 Fe 20.39 P 5.87 Molmasse 544 (MS, bez. auf ⁵⁶Fe)

Di- μ -carbonyl- μ_3 -(cyclohexylphosphiniden)-(η^5 -cyclopentadienyl)bis(tricarbonyleisen)mangan-(Fe - Fe) (2d): Eine Lösung von 7.0 g (14 mmol) Fe₃(CO)₁₂ in 150 ml Toluol wird mit 4.1 g (14 mmol) η^5 -C₅H₅(CO)₂MnPH₂C₆H₁₁ (3d) ¹⁹⁾ 12 h bei 70 °C gerührt. Dabei färbt sich die grüne Lösung allmählich dunkelrot. Nach Filtrieren über eine mit Kieselgel beschichtete Fritte wird das Solvens i. Hochvak. bei 40 °C abgezogen. Der viskose braunrote Rückstand wird in 200 ml *n*-Pentan aufgenommen und die Lösung 12 h auf - 28 °C abgekühlt. Dabei kristallisieren rotbraune Kristalle aus. Nach mehrmaligem Umkristallisieren aus *n*-Hexan/Toluol (9:1) Schmp. 189 °C (Zers.), Ausb. 3.6 g (45%, bez. auf 3d).

> $C_{19}H_{16}Fe_2MnO_8P$ (569.9) Ber. C 40.04 H 2.83 Fe 19.60 P 5.43 Gef. C 40.17 H 2.79 Fe 19.43 P 5.67 Molmasse 570 (MS, bez. auf ⁵⁶Fe)

 $Di-\mu$ -carbonyl-(n^5 -cyclopentadienyl)- μ_3 -[(4-methoxyphenyl)phosphiniden]-bis(tricarbonyleisen)mangan(Fe – Fe) (2e): Entsprechend 2d werden 7.0 g (14 mmol) Fe₃(CO)₁₂ in 150 ml Toluol mit 4.42 g (14 mmol) 3e 12 h bei 75 °C gerührt. Nach entsprechender Aufarbeitung rote Kristalle, Schmp. 154 °C (Zers.), Ausb. 4.2 g (50%, bez. auf 3e).

> $C_{20}H_{12}Fe_2MnO_9P$ (593.9) Ber. C 40.45 H 2.04 Fe 18.81 P 5.12 Gef. C 40.23 H 2.17 Fe 18.63 P 5.49 Molmasse 594 (MS, bez. auf ⁵⁶Fe)

 $Di-\mu$ -carbonyl-(n^5 -cyclopentadienyl)- μ_3 -(isopropylphosphiniden)-bis(tricarbonyleisen)mangan-(Fe – Fe) (2f): Analog 2a werden 7.0 g (19.24 mmol) Fe₂(CO)₉ mit 2.6 g (8.0 mmol) 1f in Toluol 48 h bei 30 °C gerührt. Bei der Chromatographie wird 2f mit *n*-Pentan/Toluol (1:1) eluiert. Rotbraune Kristalle, Schmp. 184 °C (Zers.), Ausb. 210 mg (5%, bez. auf 1f).

 $\begin{array}{rl} C_{16}H_{12}Fe_2MnO_8P \ (529.9) & \mbox{Ber. C } 36.23 \ \mbox{H } 2.26 \ \mbox{Fe } 21.13 \ \mbox{P } 5.85 \\ & \mbox{Gef. C } 36.38 \ \mbox{H } 2.29 \ \mbox{Fe } 21.45 \ \mbox{P } 6.12 \\ & \mbox{Molmasse } 530 \ \mbox{(MS, bez. auf } {}^{56}\mbox{Fe)} \end{array}$

Di- μ -carbonyl- μ_3 -(cyclohexylphosphiniden)-(η^5 -cyclopentadienyl)bis(tricarbonylruthenium)mangan(Ru - Ru) (4a): Eine Lösung von 0.50 g (0.78 mmol) $Ru_3(CO)_{12}^{20}$ in 50 ml Toluol wird mit 0.23 g (0.78 mmol) η^5 - $C_5H_5(CO)_2MnPH_2C_6H_{11}$ (3a)¹⁹⁾ 16 h bei 50 °C gerührt. Dabei färbt sich die ursprünglich orangefarbene Lösung allmählich rot. Nach Abfiltrieren über eine mit Kieselgel beschichtete Fritte und Zugabe von ca. 1 g silanisiertem Silicagel wird das Solvens i. Hochvak. bis zur Rieselfähigkeit abgezogen. Das mit den Reaktionsprodukten beladene Kieselgel wird auf eine Säule gebracht und bei -25 °C chromatographiert. Mit *n*-Pentan wird eine breite gelbe Zone eluiert (5a). Anschließend kann mit *n*-Pentan/Toluol (2: 1) eine rote Zone eluiert werden. Nach Abziehen des Lösungsmittels und Umkristallisieren aus *n*-Hexan erhält man leuchtend rote Kristalle von 4a, Schmp. 194 °C, Ausb. 284 mg (55%, bez. auf Ru₃(CO)₁₂).

 $\begin{array}{rl} C_{19}H_{16}MnO_8PRu_2 \ (660.3) & \mbox{Ber. C } 34.55 \ \mbox{H } 2.43 \ \ \mbox{P } 4.70 \\ & \mbox{Gef. C } 34.72 \ \ \mbox{H } 2.48 \ \ \mbox{P } 4.66 & \mbox{Molmasse } 660 \ \mbox{(MS, bez. auf } ^{102}Ru) \end{array}$

1002

 $Di-\mu$ -carbonyl-(η^5 -cyclopentadienyl)- μ_3 -(phenylphosphiniden)-bis(tricarbonylruthenium)mangan(Ru - Ru) (4b): Entsprechend 4a werden 0.50 g (0.78 mmol) $Ru_3(CO)_{12}$ in 50 ml Toluol mit 0.23 g (0.78 mmol) η^5 - $C_5H_5(CO)_2MnPH_2C_6H_5^{4)}$ 16 h bei 50 °C gerührt. Bei der Chromatographie wird ebenfalls mit *n*-Pentan eine gelbe Zone eluiert (5b). Anschließend kann 4b mit *n*-Pentan/Toluol (2:1) eluiert werden. Rote Kristalle, Schmp. 187 °C, Ausb. 315 mg (62%, bez. auf Ru_3(CO)₁₂).

 $C_{19}H_{10}MnO_8PRu_2$ (654.3) Ber. C 34.86 H 1.53 P 4.74 Gef. C 34.72 H 1.56 P 4.97 Molmasse 654 (MS, bez. auf ¹⁰²Ru)

Homometallische Cluster

 μ_3 -(Cyclohexylphosphiniden)-di- μ -hydrido-triangulo-tris(tricarbonylruthenium) (5a): Bei der Darstellung von 4a wird bei der Säulenchromatographie mit *n*-Pentan eine breite gelbe Zone eluiert. Nach Abziehen des Lösungsmittels und Umkristallisieren aus *n*-Hexan/Toluol (4:1) erhält man 5a. Schmp. 126 °C (Zers.), Ausb. 152 mg (29%, bez. auf Ru₃(CO)₁₂). C₁₅H₁₃O₉PRu₃ (671.5) Ber. C 26.81 H 1.94 P 4.62

Gef. C 26.98 H 1.99 P 4.87 Molmasse 671 (MS, bez. auf ¹⁰²Ru)

 $Di-\mu-hydrido-\mu_3-(phenylphosphiniden)-triangulo-tris(tricarbonylruthenium)$ (5b): Ähnlich wie bei 5a wird durch Aufarbeiten der gelben Zone, die bei der Darstellung von 4b anfällt, 5b erhalten. Schmp. 117 °C (Zers.), Ausb. 176 mg (34%, bez. auf Ru₃(CO)₁₂).

 $C_{15}H_7O_9PRu_3$ (665.4) Ber. C 27.05 H 1.05 P 4.66

Gef. C 27.32 H 1.12 P 4.82 Molmasse 665 (MS, bez. auf ¹⁰²Ru)

- G. Huttner, J. Schneider, G. Mohr und J. v. Seyerl, J. Organomet. Chem. 191, 161 (1980).
 G. Huttner, J. Schneider, H.-D. Müller, G. Mohr, J. v. Seyerl und L. Wohlfahrt, Angew.
- C. Hutther, J. Schneider, H.-D. Muller, G. Mohr, J. V. Seyer and L. Wohlfahrt, Angew. Chem. 91, 82 (1979); Angew. Chem., Int. Ed. Engl. 18, 77 (1979).
- 4) G. Huttner und H.-D. Müller, Z. Naturforsch., Teil B 30, 3247 (1975).
- ⁵⁾ W. Strohmeier, Angew. Chem. 76, 873 (1964); Angew. Chem., Int. Ed. Engl. 3, 730 (1964).
- ⁶⁾ Mit *n*-Butyllithium reagieren die Cluster $Fe_3(CO)_9(H_2)PR$ in THF zu den ionischen Spezies $[Fe_3(CO)_9PR]^2 Li_2^{2+}$, die mit Tetrabutylammoniumbromid als Salze, $[Fe_3(CO)_9PR]^{2-}$ $[(n-C_4H_9)_4N]_2^{2+}$, gefällt werden können.
- ⁷⁾ K. Natarajan, O. Scheidsteger und G. Huttner, J. Organomet. Chem. 221, 301 (1981). Anmerkung bei der Korrektur (13.1.1982): Darstellung und Struktur von Ru₃(CO)₉(H₂)PPh wurden inzwischen auch von anderer Seite beschrieben: F. Iwasaki, M. J. Mays, P. R. Raithby, P. L. Taylor und P. J. Wheatley, J. Organomet. Chem. 213, 185 (1981).
- ⁸⁾ A.-P. Humphries und H. D. Kaesz, Progr. Inorg. Chem. 25, 145 (1979).
- 9) R. Bau und R. G. Teller, Acc. Chem. Res. 12, 176 (1979).
- ¹⁰ A. J. P. Domingos, B. F. G. Johnson und J. Lewis, J. Organomet. Chem. 36, C43 (1972).
- ¹¹⁾ C. R. Eady, B. F. G. Johnson und J. Lewis, J. Organomet. Chem. 57, C 84 (1973).
- ¹²⁾ A. J. Canty, B. F. G. Johnson und J. Lewis, J. Organomet. Chem. 43, C35 (1972).
- 13) R. Mason und K. M. Thomas, J. Organomet. Chem. 43, C 39 (1972).
- 14) S. Jeannin, Y. Jeannin und G. Lavigne, Inorg. Chem. 17, 2103 (1978).
- ¹⁵⁾ D. E. C. Corbridge, The Structural Chemistry of Phosphorus, Elsevier Scientific Publishing Company, New York 1974.
- ¹⁶⁾ T. Weil, B. Prijs und H. Erlenmeyer, Helv. Chim. Acta 36, 1314 (1953).
- 17) J. E. Bisey und H. Goldwhite, Tetrahedron Lett. 1966, 3247.
- ¹⁸⁾ Grüne Zone: η⁵-C₅H₅(CO)₂MnFe₂PC₆H₅(CO)₇; G. Huttner, G. Mohr und A. Frank, Angew. Chem. 88, 719 (1976); Angew. Chem., Int. Ed. Engl. 15, 687 (1976).
- ¹⁹⁾ H. Willenberg, Dissertation, Techn. Univ. München 1977.
- ²⁰⁾ M. J. Bruce und F. G. A. Stone, J. Chem. Soc. A 1967, 1238.

[213/81]

¹⁾ G. Huttner, A. Frank und G. Mohr, Z. Naturforsch., Teil B 31, 1161 (1976).